623 research outputs found

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant tNt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    The Szemeredi-Trotter Theorem in the Complex Plane

    Full text link
    It is shown that nn points and ee lines in the complex Euclidean plane C2{\mathbb C}^2 determine O(n2/3e2/3+n+e)O(n^{2/3}e^{2/3}+n+e) point-line incidences. This bound is the best possible, and it generalizes the celebrated theorem by Szemer\'edi and Trotter about point-line incidences in the real Euclidean plane R2{\mathbb R}^2.Comment: 24 pages, 5 figures, to appear in Combinatoric

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k12k-1 points, also contains at least one point from every color class. We also show that the bound 2k12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles

    Full text link
    We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color. We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This can be interpreted as coloring point sets in R^2 with k colors such that any bottomless rectangle containing at least 3k-2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set. For this problem, we also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k)p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the European Workshop on Computational Geometry, held in Assisi (Italy) on March 19-21, 201

    Decomposition of Multiple Coverings into More Parts

    Full text link
    We prove that for every centrally symmetric convex polygon Q, there exists a constant alpha such that any alpha*k-fold covering of the plane by translates of Q can be decomposed into k coverings. This improves on a quadratic upper bound proved by Pach and Toth (SoCG'07). The question is motivated by a sensor network problem, in which a region has to be monitored by sensors with limited battery lifetime

    Blocking Coloured Point Sets

    Full text link
    This paper studies problems related to visibility among points in the plane. A point xx \emph{blocks} two points vv and ww if xx is in the interior of the line segment vwˉ\bar{vw}. A set of points PP is \emph{kk-blocked} if each point in PP is assigned one of kk colours, such that distinct points v,wPv,w\in P are assigned the same colour if and only if some other point in PP blocks vv and ww. The focus of this paper is the conjecture that each kk-blocked set has bounded size (as a function of kk). Results in the literature imply that every 2-blocked set has at most 3 points, and every 3-blocked set has at most 6 points. We prove that every 4-blocked set has at most 12 points, and that this bound is tight. In fact, we characterise all sets {n1,n2,n3,n4}\{n_1,n_2,n_3,n_4\} such that some 4-blocked set has exactly nin_i points in the ii-th colour class. Amongst other results, for infinitely many values of kk, we construct kk-blocked sets with k1.79...k^{1.79...} points

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Subsampling in Smoothed Range Spaces

    Full text link
    We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in [0,1][0,1]. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through ε\varepsilon -nets and ε\varepsilon -samples (aka ε\varepsilon-approximations). We characterize when size bounds for ε\varepsilon -samples on kernels can be extended to these more general smoothed range spaces. We also describe new generalizations for ε\varepsilon -nets to these range spaces and show when results from binary range spaces can carry over to these smoothed ones.Comment: This is the full version of the paper which appeared in ALT 2015. 16 pages, 3 figures. In Algorithmic Learning Theory, pp. 224-238. Springer International Publishing, 201

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given
    corecore